ORIGINAL ARTICLE

Biosynthesis of ¹⁵NL-phenylalanine by phenylalanine ammonia-lyase from *Rhodotorula glutinis*

Wenya Wang · Haiyan Yue · Qipeng Yuan · Wenchuan Wang

Received: 1 March 2007/Accepted: 11 March 2008/Published online: 26 March 2008 © Springer-Verlag 2008

Abstract Catalyzed by phenylalanine ammonia-lyase from *Rhodotorula glutinis*, 2% *trans*-cinnamic acid and 0.5 mol/l (¹⁵NH₄)₂SO₄ was bioconverted to ¹⁵NL-phenylalanine. The yield and the purity of ¹⁵NL-phenylalanine reached 71 and 99.3%, respectively. The results showed that 96% of ¹⁵N was labeled on the L-phenylalanine and 88% of (¹⁵NH₄)₂SO₄ was recovered. The present paper provides a new and economic way for biosynthesis of ¹⁵NL-phenylalanine.

Keywords 15 NL-phenylalanine \cdot Phenylalanine ammonia-lyase \cdot $(^{15}$ NH₄) $_2$ SO $_4$ \cdot *Rhodotorula glutinis*

Introduction

¹⁵N, a stable isotope of nitrogen, is a safe tracer and has been used widely in scientific research, such as organic chemistry, biochemistry, pharmacy, and agricultural science. Hachey (1994) used ¹⁵N as a tracer to detect the nutrient dynamics during pregnancy and lactation period. In 1995, Yudkoff (Marc and Itzhak 1995) studied the metabolic rate in neonates by ¹⁵N and ¹³C to find protein synthesis pathway.

The first two authors contributed to the work equally.

W. Wang · H. Yue · Q. Yuan State Key Laboratory of Chemical Resource Engineering, Beijing 100029, China

Q. Yuan (☒) · W. Wang College of Life Science and Technology, Beijing University of Chemical Technology, Box 75, Beijing 100029, China e-mail: yuanqp@mail.buct.edu.cn essential in life science, in which ¹⁵N amino acids play a critical role. Therefore, the ¹⁵N amino acids production is prospective and has potential economic values. With the scientists' efforts, some ¹⁵N labeled amino acids have been prepared, such as ¹⁵N-glycin, ¹⁵N-lysine, ¹⁵N-alanine and ¹⁵N-leucine (Rulin 1986); however, the synthesis of ¹⁵NL-phenylalanne has not been reported by now, some isotope labeled L-phenylalanines were prepared by chemical synthesis or bioconversion (LeMaster and Cronan 1982; Tachibana and Ando 1983; Kenjiro et al. 1984) as the substitute, such as L-[3,4-¹³C₂]phenyl-[1-¹³C]alanine, L-phenyl-[2,3,3-²H₃]alanine, D-phenyl-[2,3-²H₂]alanine.

It is well known that protein synthesis research is

There are some factors to be considered in the route selection of ¹⁵NL-phenylalanne synthesis, including ¹⁵N source availability, labeled products' purity, synthetic efficiency, preparation cost and product yield. In addition, the unconverted ¹⁵N sources should be recovered easily. There are four methods to produce L-phenylalanine, i.e., extraction, chemical synthesis, fermentation and enzymatic biotransformation. Among the four preparation methods, the enzymatic-catalyzed process has become more popular in preparation of labeled L-phenylalanine. The reaction catalyzed by phenylalanine ammonia-lyase (PAL) is an effective and economic route to label L-phenylalanine. In this route, the ¹⁵N source, (¹⁵NH₄)₂SO₄, is easily accessible, commercially available and easy to be recovered. In addition, the L-phenylalanine can be synthesized stereoselectively by PAL.

In this work, (¹⁵NH₄)₂SO₄ and t-Ca were catalyzed to synthesize ¹⁵NL-phenylalanne by PAL from the cell of *Rhodotorula glutinis* (Fig. 1), then the cell was removed and the t-Ca was acidified, filtrated and separated from the supernatant containing ¹⁵NL-phenylalanine. ¹⁵NL-phenylalanne was isolated by adsorption resin and then

Fig. 1 Biosynthesis of L-phenylalanine by PAL

crystallized to obtain final product. The unconverted (¹⁵NH₄)₂SO₄ was recovered by a specific apparatus.

Method and materials

Chemicals

(¹⁵NH₄)₂SO₄ was provided by Shanghai Research Institute of Chemical Industry. L-Phe with biochemical-grade and all other chemicals with analytical-grade were purchased from Beijing Chemical Reagent Company. Yeast extract, beef peptone and glucose were provided by Beijing Shuangxuan Microbial Production Company (Beijing, China).

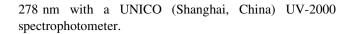
Microorganism

The yeast, *R. glutinis* AS2.102, obtained from China General Microbiological Culture Collection Center (CGMCC), and was used as a microbial source of PAL in this work.

Culture media

Stock medium contained (g/l): malt extract 10 °Be, agar 20. The medium was sterilized for 30 min at 121°C.

Seed medium contained (g/l): yeast extract 10, beef peptone10, glucose 5, NaCl 5, K₂HPO₄ 1.


PAL induction medium contained (g/l): yeast extract10, beef peptone10, glucose 5, NaCl 5, K₂HPO₄ 1, L-Phe 0.5.

Both of the two media were sterilized for 20 min at

Both of the two media were sterilized for 20 min at 121°C.

Assay of PAL activity

PAL activity unit (U) here is defined as the amount of enzyme required to biotransform 1 µmole L-Phe to t-Ca per minute at 30°C. The PAL specific activity is therefore expressed as the number of U in per milligram of dry cell (U/mg). The activity is assayed by the Hodgins' (1968) method. Substrate solution containing 2.5 ml of 50 mmol/l L-Phe, 0.5 ml of 0.05% cetylpyridinium chloride and 1.75 ml of 25 mmol/l Tris–HCl buffer (pH 8.8) are mixed with 0.25 ml of cell suspension. After 10 min of reaction at 30°C, the reaction mixture is centrifuged and the t-Ca concentration in the supernatant is determined at

Analyses of L-Phe

L-Phe was measured with a method based on reversed-phase HPLC (HITACHI, Japan), using a precolumn derivatization technique with a gradient program. The column used was a C_{18} (250 \times 4.6 mm, 5 μ m, DiamodsilTM), and the temperature was 30°C. The peaks were detected with an ultraviolet (UV) detector at 360 nm and processed using the data processor of the system.

Cultivation of cell containing PAL by fermentation

The cells on the slant stock medium were cultivated for 24 h at 30°C, and were inoculated into 50 ml seed medium in a 250 Erlenmeyer flask and cultivated on a 150 rpm reciprocal shaker for 24 h at 30°C. Then, 5 ml seed culture was inoculated into a 250 Erlenmeyer flask with 50 ml PAL induction medium and cultivated on a reciprocal shaker for 21 h at 150 rpm and 30°C.

The culture broth was harvested by centrifugation at $5,100\times g$ (Centrifugal TDL-5, Shanghai, China) for 10 min. After washing with 0.9% sterilized saline and water, a resting cell suspension containing approximately 25 mg cell dry weight/ml with the PAL specific activity of 18×10^{-3} – 20×10^{-3} U/mg. dry cell was prepared in 25 mmol/l Tris–HCl buffer, pH8.8, and used as the source of PAL in the enzymatic reaction.

Enzymatic reaction

The enzymatic reaction solution contained 2% t-Ca, 0.5 mol/l ($^{15}\text{NH}_4$)₂SO₄, and 1 mol/l NaOH. Making 0.5 mol/l ($^{15}\text{NH}_4$)₂SO₄ and 1 mol/l NaOH reacted to get off ammonia, then added 2% t-Ca and the resting cell suspensions into the reaction solution. The bioconversion was carried out on a reciprocal shaker for 24 h at 150 rpm and 30°C .

Isolation and purification of ¹⁵NL-phenylalanne

The cells were removed by centrifugation at $5,100 \times g$ for 10 min. The resulting supernatant was adjusted to pH 4.0 with sulfate acid. In this process, the $^{15}{\rm NH_3}$ became ($^{15}{\rm NH_4}$)₂SO₄, the unconverted t-Ca was acidified and then deposited with some heavy ions and proteins containing in the .supernatant. After removing the deposition by centrifugation and filtration, the supernatant was dealt with by non-polar adsorption resin. The labeled L-phenylalanine could be adsorbed on the resin, and the unconverted ($^{15}{\rm NH_4}$)₂SO₄ flew out and was collected. The $^{15}{\rm NL}$ -phenylalanne

fractions were collected after the column was eluted with deioned water. Some non-polar colored matter had been removed by the adsorption resin, and the remaining polar colored matter could be removed by ethanol in the following step. The collected ¹⁵NL-phenylalanne fractions were condensed in vacuo and dissolved in hot 80 % ethanol at 65°C. ¹⁵NL-phenylalanne was obtained after crystallizing and freeze-drying. Identity of the product was confirmed by mass spectrometry.

Recovery of unconverted (15NH₄)₂SO₄

The collected $(^{15}\mathrm{NH_4})_2\mathrm{SO_4}$ fractions were reacted with 30% NaOH under heating. The obtained $^{15}\mathrm{NH_3}$ was absorbed by 4% sulfate acid. The remaining $^{15}\mathrm{NH_3}$ in the reaction apparatus was driven to the sulfate acid solution by nitrogen gas. The addition amount of sulfate acid was controlled by pH. The final $(^{15}\mathrm{NH_4})_2\mathrm{SO_4}$ was freeze-dried. The recovery yield of the $(^{15}\mathrm{NH_4})_2\mathrm{SO_4}$ was above 88%.

Results and discussion

Two percent of t-Ca and 0.5 mol/l (¹⁵NH₄)₂SO₄ (5.34% ¹⁵N) were bioconverted to 3.0 g/l ¹⁵NL-phenylalanne (5.10% ¹⁵N) by the PAL from *R. glutinis*, and 2.1 g/l crystalazed ¹⁵NL-phenylalanine was obtained with the purity of above 99% and the yield of 70% after isolation and purification. 96% of ¹⁵N was labeled in final product, and the dilution of ¹⁵N (from 5.34% ¹⁵N in (¹⁵NH₄)₂SO₄ to 5.10% ¹⁵N in ¹⁵NL-phenylalanne product) is due to other isotope of N in L-phenylalanne coming from PAL induction medium and from cell metabolites in the culture broth.

In the present paper, the yield and the purity of ¹⁵NL-phenylalanine are higher than the reported (29 and 62.9%) (Hadener and Tamm 1987). Compared with reported biosynthesis method of unlabeled L-phenylalanine, the purity of ¹⁵NL-phenylalanine (above 99%) in this work is as high as that of the reported unlabeled L-phenylalanine. The yield of 70% is close to that of the unlabeled L-phenylalanine reported (Onishi et al. 1987). The productivity of the labeled L-phenylalanine (3 g/l) is lower than that of the reported unlabeled one (11 g/l) (Yamada et al. 1981), which is due to low concentration of (¹⁵NH₄)₂SO₄ (0.5 mol/l), and the strain with lower PAL activity in the research. Because of the high price of (¹⁵NH₄)₂SO₄, we reduced the reported concentration of NH₄⁺ from 8 to 1 mol/l in order to decrease the cost of production.

Eighty-eight percent of unreacted (¹⁵NH₄)₂SO₄ could be recovered using a specific equipment in this work. Because the ¹⁵N source is expensive, its recovery is critical for the industrial production. Usually, ion-exchanged resin is used for the isolation of unlabeled L-phenylalanine, but it is

difficult to separate ¹⁵NL-phenylalanine from (¹⁵NH₄)₂SO₄. In this work, the non-polar adsorption resin was used to isolate ¹⁵NL-phenylalanine from (¹⁵NH₄)₂SO₄ and other components in the supernatant, which a satisfied results was obtained. Then, another recovery equipment was applied to separate (¹⁵NH₄)₂SO₄ from other components in non-polar adsorption resin.

The route of production of ¹⁵NL-phenylalanine in this paper is effective and economic, and suitable for industrial production. The ¹⁵N resource is easily available and recovered. Furthermore, the ¹⁵N is easy to be labeled on the L-phenylalanine, because the (¹⁵NH₄)₂SO₄ is the only nitrogen resource and L-phenylalanine is the only final product. In the proposed route, all ¹⁵N in ¹⁵NL-phenylalanine comes from (¹⁵NH₄)₂SO₄, ¹⁵NL-phenylalanine is the only target product for the ¹⁵N in (¹⁵NH₄)₂SO₄ and the labeled ¹⁵NL-phenylalanine is of high purity, high yield and lower ¹⁵N dilution rate. In conclusion, the results in the paper offer an effective and economic route to biosynthesis [1-¹⁵N] L-phenylalanine.

Acknowledgments This research has been supported financially by Natural Science Foundation of China (NSFC) (No.20576010). In addition, the authors are grateful for Shanghai Research Institute of Chemical Industry for providing ($^{15}NH_4$)₂SO₄ and analyses of products.

References

Hachey DL (1994) Stable isotopes for measurement of nutrient dynamics during pregnancy and lactation. Adv Exp Med Biol 352:265–278

Hadener A, Tamm Ch (1987) Synthesis of specifically labelled L-phenylalanines using phenylalanine ammonia lyase activity. J Label Compounds Radiopharma 24(11):1291–1306

Hodgins DS (1968) The presence of a carbonyl group at the active site of L-phenylalanine ammonia-lyase. Biochem Biophys Res Co 32(2):246–253

Kenjiro T, Tetsuo K, Michinori W, Sannamu L, Yasushi K, Nobuo I (1984) Facile synthesis of (2R,3R)-phenylalanine-2,3-d₂ and NMR study on Deuterated Gramicidin S. Bull Chem Soc Jpn 57(8):2193–2197

LeMaster DM, Cronan JE (1982) Biosynthetic production of ¹³C labeled amino acids with site specific enrichment. J Biol Chem 257:1224–1229

Marc Y, Itzhak N (1995) Stable isotopes as metabolic probes for nutritional studies in neonates. Clin Perinatol 22(1):97–109

Onishi N, Yokozeki K, Hirose Y, Kubota K (1987) Enzymatic production of L-phenylalanine from trans-cinnamic acid by *Endomyces lindneri*. Agric Biol Chem 51(1):291–292

Rulin F (1986) Organic syntheses with stable isotopes. Chemical industry press, Beijing, 260 pp

Tachibana Y, Ando M (1983) A kinetic study of a $\rm Zn^{[2+]}$ -catalyzed transamination reaction between pyridoxamine analogs with a pyridinophane structure and α -keto acids. Bull Chem Soc Jpn 56:3652-3656

Yamada S, Nabe K, Izuo N, Nakamichi K, Chibata I (1981) Production of the L-phe from trans-cinnamic acid with *R. glutinis* containing L-phe ammonia-lyase activity. Appl Environ Microbiol 42(5):773–778

